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J .  Phys. A: Math. Gen., Vol. 8, No. 3, 1975. Printed in Great Britain. 0 1975 

The ambiguities of dimensional regularization scheme 

M Nouri-Moghadam and J G Taylor 
Department of Mathematics, King's College, London WCZR ZLS, U K  

Received 1 July 1974 

Abstract. The dimensional regularization technique is used to evaluate one-loop corrections 
to gravitational self-interaction. The application of such a scheme contains certain ambi- 
guities which are presented and discussed. 

Attempts to remove these ambiguities have not yet proved successful. 

1. Introduction 

I t  has been suggested by several authors that analytic continuation in the number of 
space dimensions may be a convenient regularizing technique especially in the case of 
gauge theories (Arnowitt and Deser 1959, Arnowitt et al 1959, 1960, Feynman 1963, 
Mandelstam 1968a, b) where it is essential that the regularization scheme respects the 
Ward-Slavnov identities. 

Dimensional regularization ('t Hooft and Veltman 1972, Ashmore 1972, 1973) has 
been successful in particular for gravitational interactions. In this case elimination of 
infrared divergences, arising from massless tadpoles of the formJ dZ"q(q2)- (2w = total 
number of space-time), and also evaluation of (Capper and Leibbrandt 1973) lead 
to calculation of one-loop graviton and matter self-energies which satisfy the Ward- 
Slavnov identities. 

The aim of this paper is to point out the ambiguities of the scheme employed for 
evaluating one-closed-loop corrections. 

Dimensional regularization may be summarized briefly as follows. First each 
momentum-space integral is defined over a 2w-dimensional Euclidean space (w complex), 
and each integral for general w is evaluated. Then the resulting expression is expanded 
in a Laurent series about the pole w = 2 (ie, four-dimensional space-time). Pole terms 
in the Laurent expression may cancel by inserting appropriate counter terms in the 
interaction Lagrangian. The value of each integral is given by the remaining part of 
the expansion continued to Minkowski space. The total amplitude for graviton-matter 
self-energy and its resultant connected Green function QuPlll is expanded about w = 2 
and is continued analytically to Minkowski space leading to a decomposition of QUPaA 
into a pole term and the finite (physical) term. 

However in continuing integrals to 2 0  dimensions they could be multiplied by any 
arbitrary function f i(w) which is a real analytic function of w with fi(2) = 1. Then the 
infinite part of Quppj ,  and the Lagrangian counter term (AL) remain unchanged but 
their finite part contains arbitrary parameters fI(2) which are ambiguous. 

In 0 2 we outline briefly some standard results and identities which are needed for 
our calculation. In 0 3 we prove the new self-energy loop contributions satisfy the 
Ward-Slavnov identities. Finally in 0 4 we summarize the result. 

334 
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2. Some standard results and identities 

Since there have been some mistakes and misprints in previous papers, in particular 
Capper et a1 (1973), we must first summarize some standard results. This will be more 
suitable than spelling out alternatives in detail. It will also enable us to set up the 
problem more fully. 

We start with the simple case of gravitation alone. 

2 2 
L = +TJ(-g)gpvRpV = ~2 J(-g)R K 

where gpv is the metric tensor, R,, the curvature tensor and R the curvature scalar. 
This Lagrangian can be written in the form 

where gpv = ( -  g)1'2gpv and n is the dimension of the space. The generating functional 
in this case is (Fradkin and Tyutin 1970) 

Z[jpv] = j d[gpv]A[gp"] exp[i 1 d x (  

where A@-"] is the fictitious particle contribution and p[B] = -(K2a)- ' (apgpv)2, the 
gauge braking term, is known as the weight function. The resultant S-matrix is unitary 
and independent of choice of gauge (parameter a) (for simplicity fix the gauge by choosing 
a = - 1). 

We use the standard Minkowski space based approach to covariant quantization 
in which the quantized metric gpv is decomposed as 

Erv  = 6'"+K@' (2.4) 

g p v  = 6pv-K4pv+KZ4pv+K24pa4zv-K34pz4ap4pv+O(K4) (2.5) 

where 6'' is the n-dimensional Kronecker delta (dpp  = n).  Then 

and there is no need to distinguish between upper and lower indices of 4rv.  
Writing the Lagrangian L as 

m 

L = 1 K'-'L(j) 
j =  2 

then 

The free graviton propagator will be 

( 2 . 8 ~ )  

where D(n)  = ( 4 7 7 ~ ~ ) ' - " ' ~  is the massless scalar propagator. Alternatively in momentum- 
space 

1 
Dap,ip(p) = P(6a"pp + 6ap6b.A -6modAp).  (2.8b) 
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The propagator of the fictitious particle is obtained from A [ g p v ] -  which is 

D a p ( p )  = 6,, (2.9) 
P 2 '  

To obtain vertex functions in momentum-space we need L(3) which is 

1 
+ 4 p ~ ~ d ~ u . r 4 ~ r . u - 4 p K . p 4 r K , p  + z d p r , p 4 \ v , p ) ]  (2.10) 

which gives the graviton-<-q vertex (the two different fictitious particles are (, q, see 
figure 2) and the three-graviton vertex (see figure 1) respectively as 

(2.11) K / ? , i , p ( k l  3 k 2 ,  k 3 )  = - 6 , ( 2 k , B ) k 2 p + ' 1 p k 2 ( 2 k 3 8 )  

\ 

Figure 1.  The three-graviton vertex Figure 2. The two fictitious particle graviton \erteu 

(2.12) 
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All the possible one-closed-loop graphs are shown in figure 3. The contributions from 
figures 3(a) and (b) have been explicitly calculated, while the massless tadpole diagram 
(c) is consistently equated to zero (Capper and Leibbrandt 1972). Similar restriction 
is applied to (f), which corresponds to the c5& term (Capper and Leibbrandt 1972,1973). 
However, ( d )  and (e)  containing zero-momentum propagator of mass zero have not 
been handled. Self-energy contributions from diagrams (a) and (b) are denoted by 
Fapa,pf(p) and RaDatp,(p) respectively. 

- y Q Q Q  * U X/& 
(U) ( b )  IC) Id) le) ( f )  

Figure 3. Lowest-order contribution to the graviton self-energy 

2.1. The fictitious particle self-energy loop 

The contribution from fictitious loop is given by (figure 4) 

9 

P-9 

Figure 4. Fictitious particle loop. 

To evaluate various integrals in this expression basic integral I is used, 

I1 = J d2"q[q2(q - P I 2 ]  - ' (2.14) 

= nU[r (h -2 ) ] -  T ( ~ - w ) ~ ( o -  i)r(m- i)(p2)"'-* (2.15) 
where the following formulae have been used, namely : 

( q 2 ) -  ' = JOm exp( -q2) da q 2  > 0 

d2"q exp( -aq2 +2b.  q)  = f 
where 

Re(z) > 0. 

(2.16) 

(2.17) 

(2.18) 
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The various gamma functions in (2.15) are continued analytically to other values of w 
other than w = 2 by means of the partial fraction expansion 

(2.19) 

The concept of 'analytic continuation in the number of dimensions' is the most 

The various integrals in equation (2.13) can be obtained by differentiation of equation 
important single feature in the technique of dimensional regularization. 

(2.17) with respect to b, (b, vector over a space of 2w dimensions). Thus: 

J d2"dq2(q - P)'I - = P J Z  (2.20) 

(2.21) 

where 

and each of integrals I,, . , , , I, is obtained in terms of I ,  as 

I 2  = (2)-111 

I4 = 0[2(2w-1)]- '11 

I 5  = ( 0 + 1 ) [ 4 ( 2 w - l ) ] - ~ I ,  

I, = - [4(2~0-1)]-~1,  

I, = - [ 8 ( 2 ~ - 1 ) ] - ' p ~ I ~  

1, = (0 + l ) (w+ 2)[4(4w2 - I)]- ' 1 ,  

I, = -(CO+ 1) [8 (40~-1 ) ] - Ip~Z~  

1, = [16(4w2 - 1)]-1(p2)zZ,.  

Strbstituting each integral into equation (2.13) gives 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.301 
(2.31) 

(2.32) 
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and finally in terms of I ,  we get 

~ U B U , S f ( P )  = + K2[P,P,Pa++7,Fl(PZ) + 6,,&,*F2(P2) 

+ (L4?,, + 4?,4,,)F3(P2) + (&,Pu,P,, + 6,,,,P,Pp)F4(P2) 
+ ( d u u e ~ p ~ p ,  + 6 p , ~ , ~ p ,  + 6 , , , ~ p ~ , ,  + ~ , , . P , P , , )  x Fs(p2)1 (2.34) 

where 

F1 = - [2(40' - 1 ) ] -  ' (w3 + 3w2 - 20 - 2)1 1 (2.3 5a) 

F2 = F3 = - [8(4wZ - 1 ) ] -  'w(p2)211 (2.356) 

F4 = - 8[8(4a2 - l ) ]  - ' ( 2 ~ '  + 20 + l)p211 ( 2 . 3 5 ~ )  

F5 = -16[16(402-1)]-'p211. (2.356) 

The explicit form of these F will be required to verify the Slavnov-Ward identities. 

2.2. The graviton self-energy loop 

Similar procedure may be applied to the graviton loop shown in figure 5. The self-energy 
amplitude is given by 
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P 

P-9 

Figure 5. Graviton loop. 

The final form of the graviton loop is 

R a p a , p s ( ~ )  = K 2 [ p a p p p a , p p , R ~ ( P 2 )  + ' a p ' a , , , R 2 ( P 2 )  + ( h a a ' d p p ,  + 6 p a , 8 a p , ) R 3 ( p 2 )  

+ ( d a p P a , P p ,  + d a , p , p a p p ) R , ( p 2 )  + ( d a a , P p P p ,  + d , a , P a P p ,  + 8 a p , P p P a *  

+ d p p , ~ a ~ a , ) R , ( ~ ~ ) l  (2.37) 

RI = [ 8 ( 2 ~ - 1 ) ] - ' ( t 0 ~ - ~ ~ ~ + 2 4 ~ - 8 ) 1 ,  (2 .38~)  

R 2  = [ 3 2 ( ~ - 1 ) ~ ( 2 ~ - 1 ) ] - ' ( - 7 w ~ + 2 0 ~ +  1 3 ~ ) ( p ~ ) ~ I ,  (2.38 b) 

R3 = [ 3 2 ( 2 ~ -  1 ) ] - ' ( 8 ~ ~  + 5 ~ - 8 ) ( p ~ ) ~ 1 ~  (2.38~) 

R4 = [32(20- l ) ( o -  1)]- ' (2w3-2w2+20~+4)p2Z,  (2.38d) 

R5 = [ 3 2 ( 2 ~ - 1 ) ] - ' ( - 8 ~ ~ ~ - 5 ~ + 1 0 ) p ~ 1 , .  (2.38e) 

where 

The explicit forms of these R are essential for verifying the Slavnov-Ward identities. 

2.3. Total loop contribution 

Adding (2.33) and (2.36) the total contribution from the graviton and fictitious particle 
loops is given by 

T p a ' p b )  = K 2 [ P a p p P a , P p ,  T(P') + d a p d a ' p ,  G ( p 2 )  + ( d a p ' d p p  + S p a < S a , , ) T 3 ( p 2 )  

+ ( d a p P a , P p ,  + G a , p , p a p p ) T 4 ( p 2 )  + ( d a a , P p P p ,  + d p a , P a P p ,  + d a p ' p p p a ,  

+ 8 p p a ~ a ~ a , ) T 3 ( ~ ~ ) I  (2.39) 

TI = [8(40' - 1)- '( + 2 0 ~  - 5 0 ~  + 35w2 + 160)1, (2 .40~)  
where 

T2 = [ 3 2 ( 0 - 1 ) ~ ( 4 ~ ~ -  l)]- '(- 1 4 ~ ~ - 7 7 ~ ~ + 3 6 ~ 0 ~ + 9 ~ ) ( ~ ~ ) ~ 1 ~  (2.40b) 

T3 = [ 3 2 ( 4 0 ~ - 1 ) ] - ~ ( 1 6 ~ ~ +  1 8 0 ~ - 1 5 ~ - 8 ) ( ~ ~ ) ~ 1 1  (2.40c) 

T4 = [ 3 2 ( ~ -  1)(4w2- 1)]-1(+4~4-10~3+38~2+32~+8)p211 (2.40d) 

T5 = [ 3 2 ( 4 0 ~ - 1 ) ] - ~ ( - 1 6 ~ ~ - 1 8 ~ ~ +  1 5 ~ ~ + 8 ) p ~ Z 1 .  (2.40e) 

The Ward-Slavnov identities are derived (Capper and Ramon-Medrano 1973) 

2/a(T~,",,(z)~,p,,(Y)) = dvPS(Z - Y )  E # O  (2.41) 

which is true for each order of K and any value of a. Equation (2.41) implies for the 
lowest-order self-energy contribution T p a c p .  we have 

P,P"D,,,,p(P)T,p,,p,(P)~,,a,,,,(P) = 0 (2.42) 

from equation (2.2) which gives 
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where D(p)  is graviton propagator. This identity in terms of connected Green function is 

(2.43) 

(2.44) 

T3+p2T5 = 0 

(p2)’T1 + 4(O - T’ + 4(0 - 1 ) (  T3 - p2T4) = 0. 

These identities are satisfied directly from equations (2.40aH2.40e). 

(2.47) 

(2.48) 

3. Ambiguities 

Let us consider the transformations 

Zi(W) + li(0) = Zi(W)jJO) ( 3 . 1 )  

In the previous section the above transformations lead to a set of transformations 
where J is a real analytic function of w with J(2)  = 1. 

on equations (2.20)-(2.23), namely 

1, + h(wV1 
and 

equation (2.20) + f2(w) x equation (2.20) 

equation (2.21) + f3(w)  x equation (2.21) 

equation (2.22) + f4(w) x equation (2.22) 

equation (2.23) + fs(w) x equation (2.23). 
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(3.4) 

1 (w3 - 5w2 - 2w) 
Fl = - 1 1  f * + f 3  2(4w2- i (3 .74  

(3.7b) 

(3.7c) 

(3.7d) 

Similar transformations are carried out for the graviton closed-loop contribution 
and the new function Rapa,,>(p2) is obtained 

Rq?arfl'i401) = K2[P$ppa 'pp 'R l (p2 )  + + ('mzSdp,S' + 6~zrdzp')R3(P2) 

+ ( 'appz'pp' + 'z'p'P$p)&(P2) + ('az'P@p' + ' pa 'P$p '  + dzp'PpPd 

+ ~ p p , P $ z ~ ) ~ 5 ( P 2 ) l  (3.8) 

where f3(w) = f4(0) = fs(w) because of the symmetry properties of the indices and 

(3.9a) 

(p2)'I ( - 7w3 + 2w2 + 13) R2 = - 
32 (O - 1)'(20 - 1 )  (3.9b) 
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- (p2)’Z1 
R3 = - (4(2:;5) 

2(-8w2+12w-8 (80~-510’+83~-28) 
(2w-l)(w-l) f l +  

(0-1) 32 

4(2w2 -0-6) ( -  1 h 3  + 14w2+ 12) 
U-1 (w-l)(2w-l) 

(3.9e) 

(204 - 5 w 3  + 3~ + 1 6 ~ )  
8(4w2 - 1) 

(3.11a) 

4( -0’ - 60 + 9) 4(50 - 6) 
(w- 1) 

(2w4 + 9 0 ~  - 160’ + SW + 12) 
f3 

(3.1 l b )  
(w- 1)’ ” + (w - 1)’(40’ - 1) f1 + 

f 2  

T2 = - 32 

T3 - (p’)’I1 [“h’ - 5 )  2( - 8 d +  1 2 ~ -  8) 
32 (w-1) f l +  (U-1) 

8w3 -51w2+ 8 3 ~ - 2 8  4~ 
( 2 ~ -  l)(w- 1) --)f3] 40’ - 1 (3.1 IC) 

) (3.11d) 
4(20’ -U - 6) ( -  28w4 + 6w3 + 140’ + 280+ 16) + 

(0-1) (U - 1)(40’ - 1) 

-2f3 + (8w’ + 3w+ 2) 
T5 = - 32 (4~’-1)  (20- 1) f3-8(w+ l)fl)* 
- ”‘“i (3.11e) 

The Slavnov-Ward identities are : 

T3+p2T5 = 0 (3.12) 

p’~ l+4(w-1)~Tz+4(w- l ) (T~-p’T4)  = 0. (3.13) 

In order to satisfy the identities (3.12) and (3.13) we must have 

= o  

(3.14) 

equation (3.12) = [(2w2 - 3) fl + 2( - 20’ + 30 - 2) fz + (20’ - 6w + 7)f31 32(w (PZI2I - 1 1) 

equation (3.13) = @’)’Z, -(3w2-6w)f1 +(-3wz+6w-4)f2 i: 
( 4 8 ~ ~  - 9 6 ~ ’  + 1160’ + 240 - 32) + 8(4w2 - 1) f3) = o  (3.15) 
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which give a set of simultaneous equations with three unknowns f, , f; and f 3  

(20' - 3)f,+ 2( - 2w2 + 30 - 2)fz + (20' - 60 + 7)f3 = 0 

(30' - 60)fI + 2( - 30' + 60 - 4)fz + (30' - 60 + 8)fs = 0. 

(3.16) 

(3.17) 

The only possible solution of this set of equations is 

fi = f z  = f 3 '  

We are left with one arbitrary constant f ( w ) .  

(3.18) 

4. Conclusion 

In the previous section we have shown, that the transformation (3.1) introduces arbitrary 
functions fi(w). By applying Slavnov-Ward identities we are left with at least one 
arbitary function f(o). The contribution of f'(2) at the one-loop level to the finite part 
of the connected Green function and to the Lagrangian counter term (AL) is the single 
ambiguity. 

We may encounter more ambiguities as we go to higher-order loops, since the 
number of arbitrary constants,f'(2),f"(2), etc increases with the order of the loops. To 
explain this clearly consider a typical integral involved in the one-loop and the two-loop 
diagrams, namely 

I ,  = sd2wq[qz(k-q)2]- '  x r(2-CO) (4.1 ) 

k-7  

Figure 6. 

and 

I, = ss d2"q d 2 " p [ p 2 q 2 ( q - p ) 2 ( p - k ) 2 ( k - q ) 2 ] - 1  K [F(2-o)12. (4.2) 

Figure 7. 

In the first case, the coefficients of amplitudes can be written as 

q = r ( 2  - 0) (pzy  - 2fi(w) j = 1, . . . .  5 .  (4.3) 
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Expanding each IT;. about w = 2 gives 

T. = - + [+( l)fj(2) -fj(2) lg p 2  -fj(2)] + O[(w - 2),] 
( 2 - 4  (4.4) 

where lg p 2  is continued analytically from Euclidean to Minkowski space and 
w4 = d/dw(lg w4). 

Then 

So far for the lowest order the first derivative offi(o) ie, fj(2) contributes to the 

Similarly for the higher order (eg double loop) the coefficients of amplitude 7;. are 
finite part of single loop. 

written as 

So the second derivative of&(w) ie,f;i(2) contributes to the finite part of the double loop 
and consequently contributes to the finite part of connected Green functions and 
Lagrangian counter terms (AL). 

Naturally enough all we have said here has been conjectural, since no calculations 
have been done at the two-loop level. However we do expect these results to have some 
general validity. There are three points that should be made here that are relevant. One 
is that if a similar procedure is applied to the fourth-order contribution to the vacuum 
polarization in QED there is not the same freedom of introducing further ambiguities 
along the lines we have suggested. The gauge invariance of the theory is liable to be 
destroyed and the delicate cancellations of single-loop singularities of double-loop 
integrals would not occur. However that QED is not as ambiguous as we suggest may 
well be irrelevant to the theory we are discussing. The former theory has very different 
high-energy behaviour from quantum gravity, so that the two theories may well be 
completely incomparable. 

As of yet no non-trivial double-loop quantum gravity calculation has been made. 
But there is still the problem of ambiguities in higher loops, which may be different from 
that at the lower loop level. All we can say is what happens in the latter case; it is at least 
a prior indication that further ambiguities are present than had been previously realized. 

The third aspect of (4.6) which should be noticed is that there is a single-pole term with 
residue proportional to lg p 2 .  This term may be cancelled by other terms, especially those 
arising from the single-loop counter-term resubstituted into the single-loop term. If it is 
not, then it can only be removed by an appropriate counter-term involving the un- 
pleasant factor log 02. This is a difficulty present independently of the ambiguity we 
have mentioned, since even i f f ( w )  

There is a further ambiguity which arises as follows. If the integrals I , ,  . . . , I ,  are 
evaluated ‘naively’ then they are only valid in non-overlapping regions of the w plane. 
For instance, integrals I , ,  I , ,  I ,  are defined in the non-overlapping ranges 1 e Re w < 2, 
0 < Re w -= 1 and - 1 e Re w e 0 respectively. If regularization is therefore performed 
in the ‘naive’ way there is no unique analytic continuation in the neighbourhood of 
w = 2 and even then it is impossible to evaluate the physical amplitude unambiguously. 

1 this awkward single-pole term is still present. 
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I t  was suggested (Capper and Leibbrandt 1972) that an analytic continuation is 
indeed possible provided equation (2.17) is replaced by the definition 

d2"q exp( -aq2 +2b.  q) E (:Iu - exp (T --uf(w) ) a > 0 (4.7) s 
where f ( w )  is a nonzero analytic function. 

The ambiguities are still present in the above mentioned approach. First, in order to 
get equation (2.20) we differentiate (4.7) once with respect to a or twice with respect to b,,  
giving two different results which are not consistent. The consistency of the definition 
(2.17) has thus been removed by the new definition (4.7). Secondly, the final result will 
not be independent of the exact form of f(w) as has been suggested by Capper and 
Leibbrandt (1972) by placing reasonable conditions on f (w) .  

We conclude that this second ambiguity is not removable in the suggested manner 
(Capper and Leibbrandt 1972). 

Finally we refer the reader to work of D M Capper and M J Duff on trace anomalies 
in dimensional regularization. 

The ambiguities which arise when the dimensional regularization techniques are 
applied in background field method to evaluate the one-loop correction of gravity- 
matter interaction have been discussed by Nouri-Moghadam and Taylor (1974). 
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